Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
BMC Med Genomics ; 17(1): 14, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184575

RESUMO

BACKGROUND: Though persons of African descent have one of the widest genetic variability, genetic polymorphisms of drug-metabolising enzymes such as N-Acetyltransferase-2 (NAT2) are understudied. This study aimed to identify prevalent NAT2 single nucleotide polymorphisms (SNPs) and infer their potential effects on enzyme function among Kenyan volunteers with tuberculosis (TB) infection. Genotypic distribution at each SNP and non-random association of alleles were evaluated by testing for Hardy-Weinberg Equilibrium (HWE) and Linkage Disequilibrium (LD). METHODS: We isolated genomic DNA from cryopreserved Peripheral Blood Mononuclear Cells of 79 volunteers. We amplified the protein-coding region of the NAT2 gene by polymerase chain reaction (PCR) and sequenced PCR products using the Sanger sequencing method. Sequencing reads were mapped and aligned to the NAT2 reference using the Geneious software (Auckland, New Zealand). Statistical analyses were performed using RStudio version 4.3.2 (2023.09.1 + 494). RESULTS: The most frequent haplotype was the wild type NAT2*4 (37%). Five genetic variants: 282C > T (NAT2*13), 341 T > C (NAT2*5), 803A > G (NAT2*12), 590G > A (NAT2*6) and 481C > T (NAT2*11) were observed with allele frequencies of 29%, 18%, 6%, 6%, and 4% respectively. According to the bimodal distribution of acetylation activity, the predicted phenotype was 76% rapid (mainly consisting of the wildtype NAT2*4 and the NAT2*13A variant). A higher proportion of rapid acetylators were female, 72% vs 28% male (p = 0.022, odds ratio [OR] 3.48, 95% confidence interval [CI] 1.21 to 10.48). All variants were in HWE. NAT2 341 T > C was in strong complete LD with the 590G > A variant (D' = 1.0, r2 = - 0.39) but not complete LD with the 282C > T variant (D' = 0.94, r2 = - 0.54). CONCLUSION: The rapid acetylation haplotypes predominated. Despite the LD observed, none of the SNPs could be termed tag SNP. This study adds to the genetic characterisation data of African populations at NAT2, which may be useful for developing relevant pharmacogenomic tools for TB therapy. To support optimised, pharmacogenomics-guided TB therapy, we recommend genotype-phenotype studies, including studies designed to explore gender-associated differences.


Assuntos
Arilamina N-Acetiltransferase , Etnicidade , Feminino , Masculino , Humanos , Quênia , Leucócitos Mononucleares , Farmacogenética , Genótipo , Acetiltransferases , Arilamina N-Acetiltransferase/genética
2.
BMC Pulm Med ; 23(1): 471, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001469

RESUMO

BACKGROUND: The Center for Personalized Precision Medicine of Tuberculosis (cPMTb) was constructed to develop personalized pharmacotherapeutic systems for tuberculosis (TB). This study aimed to introduce the cPMTb cohort and compare the distinct characteristics of patients with TB, non-tuberculosis mycobacterium (NTM) infection, or latent TB infection (LTBI). We also determined the prevalence and specific traits of polymorphisms in N-acetyltransferase-2 (NAT2) and solute carrier organic anion transporter family member 1B1 (SLCO1B1) phenotypes using this prospective multinational cohort. METHODS: Until August 2021, 964, 167, and 95 patients with TB, NTM infection, and LTBI, respectively, were included. Clinical, laboratory, and radiographic data were collected. NAT2 and SLCO1B1 phenotypes were classified by genomic DNA analysis. RESULTS: Patients with TB were older, had lower body mass index (BMI), higher diabetes rate, and higher male proportion than patients with LTBI. Patients with NTM infection were older, had lower BMI, lower diabetes rate, higher previous TB history, and higher female proportion than patients with TB. Patients with TB had the lowest albumin levels, and the prevalence of the rapid, intermediate, and slow/ultra-slow acetylator phenotypes were 39.2%, 48.1%, and 12.7%, respectively. The prevalence of rapid, intermediate, and slow/ultra-slow acetylator phenotypes were 42.0%, 44.6%, and 13.3% for NTM infection, and 42.5%, 48.3%, and 9.1% for LTBI, respectively, which did not differ significantly from TB. The prevalence of the normal, intermediate, and lower transporter SLCO1B1 phenotypes in TB, NTM, and LTBI did not differ significantly; 74.9%, 22.7%, and 2.4% in TB; 72.0%, 26.1%, and 1.9% in NTM; and 80.7%, 19.3%, and 0% in LTBI, respectively. CONCLUSIONS: Understanding disease characteristics and identifying pharmacokinetic traits are fundamental steps in optimizing treatment. Further longitudinal data are required for personalized precision medicine. TRIAL REGISTRATION: This study registered ClinicalTrials.gov NO. NCT05280886.


Assuntos
Arilamina N-Acetiltransferase , Diabetes Mellitus , Tuberculose Latente , Mycobacterium tuberculosis , Tuberculose , Humanos , Masculino , Feminino , Tuberculose Latente/epidemiologia , Medicina de Precisão , Estudos Prospectivos , Risco Ajustado , Tuberculose/tratamento farmacológico , Micobactérias não Tuberculosas , Mycobacterium tuberculosis/genética , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Arilamina N-Acetiltransferase/genética
3.
Front Pharmacol ; 14: 1278720, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035025

RESUMO

Introduction: Several polymorphisms altering the NAT2 activity have already been identified. The geographical distribution of NAT2 variants has been extensively studied and has been demonstrated to vary significantly among different ethnic population. Here, we describe the genetic variability of human N-acetyltransferase 2 (NAT2) gene and the predominant genotype-deduced acetylation profiles of Brazilians. Methods: A total of 964 individuals, from five geographical different regions, were genotyped for NAT2 by sequencing the entire coding exon. Results: Twenty-three previously described NAT2 single nucleotide polymorphisms (SNPs) were identified, including the seven most common ones globally (c.191G>A, c.282C>T, c.341T>C, c.481C>T, c.590G>A, c.803A>G and c.857G>A). The main allelic groups were NAT2*5 (36%) and NAT2*6 (18.2%), followed to the reference allele NAT2*4 (20.4%). Combined into genotypes, the most prevalent allelic groups were NAT2*5/*5 (14.6%), NAT2*5/*6 (11.9%) and NAT2*6/*6 (6.2%). The genotype deduced NAT2 slow acetylation phenotype was predominant but showed significant variability between geographical regions. The prevalence of slow acetylation phenotype was higher in the Northeast, North and Midwest (51.3%, 45.5% and 41.5%, respectively) of the country. In the Southeast, the intermediate acetylation phenotype was the most prevalent (40.3%) and, in the South, the prevalence of rapid acetylation phenotype was significantly higher (36.7%), when compared to other Brazilian states (p < 0.0001). Comparison of the predicted acetylation profile among regions showed homogeneity among the North and Northeast but was significantly different when compared to the Southeast (p = 0.0396). The Southern region was significantly different from all other regions (p < 0.0001). Discussion: This study contributes not only to current knowledge of the NAT2 population genetic diversity in different geographical regions of Brazil, but also to the reconstruction of a more accurate phenotypic picture of NAT2 acetylator profiles in those regions.

4.
Pharmgenomics Pers Med ; 16: 847-857, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37724295

RESUMO

Background: N-acetyltransferase 2 (NAT2) enzyme is a Phase II drug-metabolizing enzyme that metabolizes different compounds. Genetic variations in NAT2 can influence the enzyme's activity and potentially lead to the development of certain diseases. Aim: This study aimed to investigate the association of NAT2 variants with the risk of Type II diabetes mellitus (T2DM) and the lipid profile among Jordanian patients. Methods: We sequenced the whole protein-coding region in NAT2 using Sanger's method among a sample of 45 Jordanian T2DM patients and 50 control subjects. Moreover, we analyzed the lipid profiles of the patients and examined any potential associations with NAT2 variants. Results: This study revealed that the heterozygous NAT2*13 C/T genotype is significantly (P = 0.03) more common among T2DM (44%) than non-T2DM subjects (23.5%). Furthermore, the frequency of homozygous NAT2*13 T/T genotype was found to be significantly higher (P = 0.03) among T2DM patients (26.7%) compared to that of non-T2DM subjects (11%). The heterozygous NAT2*7 G/A genotype was exclusively observed in T2DM patients (11.1%) and absent in the control non-T2DM group. Moreover, among T2DM patients, those with a homozygous NAT2*11 T/T genotype exhibited significantly higher levels of triglycerides (381.50 ± 9.19 ng/dL) with a P value of 0.01 compared to those with heterozygous NAT2*11 C/T (136.23 ± 51.12 ng/dL) or wild-type NAT2*11 C/C (193.65 ± 109.89 ng/dL) genotypes. T2DM patients with homozygous NAT2*12 G/G genotype had a significantly (P = 0.04) higher triglyceride levels (275.67 ± 183.42 ng/dL) than the heterozygous NAT2*12 A/G (140.02 ± 49.53 ng/dL) and the wild NAT2*12 A/A (193.65 ± 109.89 ng/dL). Conclusion: The finding in this study suggests that the NAT2 gene is a potential biomarker for the development of T2DM and changes in triglyceride levels among Jordanians. However, it is important to note that our sample size was limited; therefore, further clinical studies with a larger cohort are necessary to validate these findings.

5.
Arch Toxicol ; 97(10): 2697-2705, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37592049

RESUMO

Human N-acetyltransferase 2 (NAT2) is subject to genetic polymorphism in human populations. In addition to the reference NAT2*4 allele, two genetic variant alleles (NAT2*5B and NAT2*7B) are common in Europe and Asia, respectively. NAT2*5B possesses a signature rs1801280 T341C (I114T) single-nucleotide polymorphism (SNP), whereas NAT2*7B possesses a signature rs1799931 G857A (G286E) SNP. NAT2 alleles possessing the T341C (I114T) or G857A (G286E) SNP were recombinant expressed in yeast and tested for capacity to catalyze the O-acetylation of the N-hydroxy metabolites of heterocyclic amines (HCAs). The T341C (I114T) SNP reduced the O-acetylation of N-hydroxy-2-amino-3-methylimidazo [4,5-f] quinoline (N-OH-IQ), N-hydroxy-2-amino-3,8-dimethylimidazo [4,5-f] quinoxaline (N-OH-MeIQx) and N-hydroxy- 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine (N-OH-PhIP), whereas the G857A (G286E) SNP reduced the O-acetylation of N-OH-IQ and N-OH-MeIQx but not N-OH-PhIP. The G857A (G286E) SNP significantly (p < 0.05) reduced apparent Km toward N-OH-PhIP but did not significantly (p > 0.05) affect apparent Vmax. Cultures of DNA repair-deficient Chinese hamster ovary (CHO) cells transfected with human CYP1A2 and NAT2*4, NAT2*5B or NAT2*7B alleles were incubated with various concentrations of IQ, MeIQx or PhIP and double-stranded DNA damage and reactive oxygen species (ROS) were measured. Transfection with human CYP1A2 did not significantly (p > 0.05) increase HCA-induced DNA damage and ROS over un-transfected cells. Additional transfection with NAT2*4, NAT2*5B or NAT2*7B allele increased both DNA damage and ROS. The magnitude of the increases was both NAT2 allele- and substrate-dependent showing the same pattern as observed for the O-acetylation of the N-hydroxylated HCAs suggesting that both are mediated via NAT2-catalyzed O-acetylation. The results document the role of NAT2 and its genetic polymorphism on the O-acetylation and genotoxicity of HCAs.


Assuntos
Arilamina N-Acetiltransferase , Citocromo P-450 CYP1A2 , Animais , Cricetinae , Humanos , Células CHO , Espécies Reativas de Oxigênio , Cricetulus , Polimorfismo de Nucleotídeo Único , Dano ao DNA , Acetiltransferases , Aminas/toxicidade , Carcinógenos/toxicidade , Arilamina N-Acetiltransferase/genética
6.
Arch Toxicol ; 97(6): 1773-1781, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37142755

RESUMO

4,4'-Methylenebis(2-chloroaniline) or MOCA is an aromatic amine used primarily in polyurethane and rubber industry. MOCA has been linked to hepatomas in animal studies while limited epidemiologic studies reported the association of exposure to MOCA and urinary bladder and breast cancer. We investigated MOCA-induced genotoxicity and oxidative stress in DNA repair-deficient Chinese hamster ovary (CHO) cells stably transfected with human metabolizing enzymes CYP1A2 and N-acetyltransferase 2 (NAT2) variants as well as in rapid, intermediate, and slow NAT2 acetylator cryopreserved human hepatocytes. N-acetylation of MOCA was highest in UV5/1A2/NAT2*4 followed by UV5/1A2/NAT2*7B and UV5/1A2/NAT2*5B CHO cells. Human hepatocytes showed a NAT2 genotype-dependent response with highest N-acetylation in rapid acetylators followed by intermediate and slow acetylators. MOCA induced higher levels of mutagenesis and DNA damage in UV5/1A2/NAT2*7B compared to UV5/1A2/NAT2*4 and UV5/1A2/NAT2*5B cells (p < 0.0001). MOCA also induced higher levels of oxidative stress in UV5/1A2/NAT2*7B cells. MOCA caused concentration-dependent increase in DNA damage in cryopreserved human hepatocytes (linear trend p < 0.001) which was NAT2 genotype dependent i.e., highest in rapid acetylators, lower in intermediate acetylators, and lowest in slow acetylators (p < 0.0001). Our findings show that N-acetylation and genotoxicity of MOCA is NAT2 genotype dependent and suggest that individuals possessing NAT2*7B are at higher risk to MOCA-induced mutagenicity. DNA damage, and oxidative stress. They confirm significant differences in genotoxicity between the NAT2*5B and NAT2*7B alleles, both of which are associated with slow acetylator phenotype.


Assuntos
Arilamina N-Acetiltransferase , Metilenobis (cloroanilina) , Cricetinae , Animais , Humanos , Cricetulus , Células CHO , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Dano ao DNA , Acetiltransferases/genética , Genótipo , Estresse Oxidativo , Polimorfismo Genético , Acetilação
7.
J Ethnopharmacol ; 315: 116616, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37182677

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Anethum graveolens L. (dill), which has been used as a medicine, spice and aromatic plant since ancient times, is not only a traditional Chinese medicines but also an important medicinal and functional food in Europe and Central and South Asia. In ethnomedicine, dill reportedly exerts a protective effect on the liver and has been widely used as a traditional medicine for the treatment of jaundice in the liver and spleen and inflammatory gout diseases in Saudi Arabia. Furthermore, studies have found that dill can regulate the NAT2 enzyme, and this plant was thus selected to study its alleviating effect on isoniazid liver injury. AIM OF THE STUDY: The purpose of this study was to explore the effect of dill on alleviating liver injury induced by hydrazine compounds represented by isoniazid through the use of network pharmacology combined with in vivo and in vitro experimental verifications. MATERIALS AND METHODS: First, we screened the key targets of dill in the treatment of liver injury through the use of network pharmacology; we then performed GO and KEGG pathway enrichment analyses using the DAVID database. We also verified the alleviative and anti-inflammatory effects of dill on isoniazid liver injury in rats by animal experiments. We further investigated the modulating effect of dill on the enzymatic activity of NAT2, a common metabolizing enzyme of hydrazine compounds. RESULTS: A total of 111 key targets were screened through network pharmacology. In vivo experiments showed that dill reduced the amount of inflammatory factors produced by isoniazid, such as IL-10, IL-1ß, TNF-α and IL-6, restored the levels of ALT, AST, r-GT, AKP and TBA in vivo, and attenuated isoniazid liver injury. Both in vivo and vitro results indicated that dill could regulate the expression of NAT2 enzymes. CONCLUSIONS: The results tentatively demonstrate that dill can alleviate isoniazid liver injury through multiple components, targets and pathways and exerts a regulatory effect on the NAT2 enzyme, and these findings thus provide new ideas for subsequent studies on hydrazide liver injury--reducing the risk of hydrazide-induced liver injury through anti-inflammation and regulation of NAT2 enzymes.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Medicamentos de Ervas Chinesas , Ratos , Animais , Isoniazida/toxicidade , Medicina Tradicional Chinesa , Arábia Saudita , Medicamentos de Ervas Chinesas/farmacologia
8.
Pharmaceutics ; 15(5)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37242713

RESUMO

Amifampridine is a drug used for the treatment of Lambert-Eaton myasthenic syndrome (LEMS) and was approved by the Food and Drug Administration (FDA) of the United States (US) in 2018. It is mainly metabolized by N-acetyltransferase 2 (NAT2); however, investigations of NAT2-mediated drug interactions with amifampridine have rarely been reported. In this study, we investigated the effects of acetaminophen, a NAT2 inhibitor, on the pharmacokinetics of amifampridine using in vitro and in vivo systems. Acetaminophen strongly inhibits the formation of 3-N-acetylamifmapridine from amifampridine in the rat liver S9 fraction in a mixed inhibitory manner. When rats were pretreated with acetaminophen (100 mg/kg), the systemic exposure to amifampridine significantly increased and the ratio of the area under the plasma concentration-time curve for 3-N-acetylamifampridine to amifampridine (AUCm/AUCp) decreased, likely due to the inhibition of NAT2 by acetaminophen. The urinary excretion and the amount of amifampridine distributed to the tissues also increased after acetaminophen administration, whereas the renal clearance and tissue partition coefficient (Kp) values in most tissues remained unchanged. Collectively, co-administration of acetaminophen with amifampridine may lead to relevant drug interactions; thus, care should be taken during co-administration.

9.
Front Pharmacol ; 14: 1091976, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077812

RESUMO

Arylamine N-acetyltransferase 2 (NAT2) is a phase II metabolic enzyme, best known for metabolism of aromatic amines and hydrazines. Genetic variants occurring in the NAT2 coding region have been well-defined and are known to affect the enzyme activity or protein stability. Individuals can be categorized into rapid, intermediate, and slow acetylator phenotypes that significantly alter their ability to metabolize arylamines, including drugs (e.g., isoniazid) and carcinogens (e.g., 4-aminobiphenyl). However, functional studies on non-coding or intergenic variants of NAT2 are lacking. Multiple, independent genome wide association studies (GWAS) have reported that non-coding or intergenic variants of NAT2 are associated with elevated plasma lipid and cholesterol levels, as well as cardiometabolic disorders, suggesting a novel cellular role of NAT2 in lipid and cholesterol homeostasis. The current review highlights and summarizes GWAS reports that are relevant to this association. We also present a new finding that seven, non-coding, intergenic NAT2 variants (i.e., rs4921913, rs4921914, rs4921915, rs146812806, rs35246381, rs35570672, and rs1495741), which have been associated with plasma lipid and cholesterol levels, are in linkage disequilibrium with one another, and thus form a novel haplotype. The dyslipidemia risk alleles of non-coding NAT2 variants are associated with rapid NAT2 acetylator phenotype, suggesting that differential systemic NAT2 activity might be a risk factor for developing dyslipidemia. The current review also discusses the findings of recent reports that are supportive of the role of NAT2 in lipid or cholesterol synthesis and transport. In summary, we review data suggesting that human NAT2 is a novel genetic factor that influences plasma lipid and cholesterol levels and alters the risk of cardiometabolic disorders. The proposed novel role of NAT2 merits further investigations.

10.
Antimicrob Agents Chemother ; 67(2): e0129722, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36622148

RESUMO

Isoniazid pharmacokinetics are not yet well-described during once weekly, high-dose administrations with rifapentine (3HP) for latent tuberculosis infection (LTBI). Fewer data describe 3HP with dolutegravir-based antiretroviral therapy for the treatment of human immunodeficiency virus (HIV). The only prior report of 3HP with dolutegravir reported elevated isoniazid exposures. We measured the plasma isoniazid levels in 30 adults receiving 3HP and dolutegravir for the treatment of LTBI and HIV. The patients were genotyped to determine NAT2 acetylator status, and a population PK model was estimated by nonlinear mixed-effects modeling. The results were compared to previously reported data describing 3HP with dolutegravir, 3HP alone, and isoniazid with neither dolutegravir nor rifapentine. The isoniazid concentrations were adequately described by a one compartment model with a transit compartment absorption process. The isoniazid clearance for slow (8.33 L/h) and intermediate (12 L/h) acetylators were similar to previously reported values. Rapid acetylators (N = 4) had clearance similar to those of intermediate acetylators and much slower than typically reported, but the small sample size was limiting. The absorption rate was lower than usual, likely due to the coadministration with food, and it was faster among individuals with a low body weight. Low-body weight participants were also observed to have greater oral bioavailability. The isoniazid exposures were consistent with, or greater than, the previously reported "elevated" concentrations among individuals receiving 3HP and dolutegravir. The concentrations were substantially greater than those presented in previous reports among individuals receiving 3HP or isoniazid without rifapentine or dolutegravir. We discuss the implications of these findings and the possibility of a drug-drug interaction that is mediated by cellular transport. (This study has been registered at ClinicalTrials.gov under identifier NCT03435146 and has South African National Clinical Trial Registration no. DOH-27-1217-5770.).


Assuntos
Arilamina N-Acetiltransferase , Infecções por HIV , Tuberculose Latente , Adulto , Humanos , Isoniazida/uso terapêutico , Tuberculose Latente/tratamento farmacológico , HIV , Quimioterapia Combinada , Infecções por HIV/tratamento farmacológico , Peso Corporal , Antituberculosos/uso terapêutico
11.
Arch Toxicol ; 97(1): 189-199, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36138126

RESUMO

The use of new psychoactive substances (NPS) as drugs of abuse is common and increasingly popular, particularly among youth and neglected communities. Recent studies have reported acute toxic effects from these chemicals; however, their long-term toxicity is unknown. Genetic differences between individuals likely affect the toxicity risk. Arylamine N-acetyltransferase 2 (NAT2) capacity differs among individuals due to genetic inheritance. The goal of the present study is to investigate the gene-environment interaction between NAT2 polymorphism and toxicity after exposure to these chemicals. We measured N-acetylation by human NAT1 and NAT2 and found that N-acetylation of NPS is carried out exclusively by NAT2. Differences in N-acetylation between NAT2*4 (reference allele) and NAT2*5B (common variant allele) were highly significant (p < 0.0001). Using DNA repair-deficient genetically engineered Chinese hamster ovary (CHO cells), expressing human CYP1A2 and either NAT2*4 or NAT2*5B, we measured the induction of DNA double-strand breaks ([Formula: see text]H2Ax) following treatment of the CHO cells with increasing concentrations of NPS. The induction of [Formula: see text]H2Ax showed a NAT2 allele-dependent response, higher in the NAT2*4 vs NAT2*5B alleles (p < 0.05). Induction of oxidative stress (ROS/RNS) was evaluated; we observed NAT2 allele-dependent response for all compounds in concentrations as low as 10 [Formula: see text]M, where NAT2*4 showed increased ROS/RNS vs NAT2*5B (p < 0.05). In summary, NPS are N-acetylated by NAT2 at rates higher in cells expressing NAT2*4 than NAT2*5B. Exposure to psychoactive chemicals results in genotoxic and oxidative damage that is modified by the NAT2 genetic polymorphism.


Assuntos
Arilamina N-Acetiltransferase , Carcinógenos , Cricetinae , Animais , Humanos , Adolescente , Cricetulus , Células CHO , Carcinógenos/toxicidade , Espécies Reativas de Oxigênio , Dano ao DNA , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Acetiltransferases/genética , Estresse Oxidativo , Polimorfismo Genético , Acetilação
12.
Toxicol Sci ; 190(2): 158-172, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36156098

RESUMO

Arylamine N-acetyltransferase 2 (NAT2) is well-known for its role in phase II metabolism of xenobiotics and drugs. More recently, genome wide association studies and murine models implicated NAT2 in regulation of insulin sensitivity and plasma lipid levels. However, the mechanism remains unknown. Transcript levels of human NAT2 varied dynamically in HepG2 (hepatocellular) cells, depending on the nutrient status of the culture media. Culturing the cells in the presence of glucose induced NAT2 mRNA expression as well as its N-acetyltransferase activity significantly. In addition, insulin or acetate treatment also significantly induced NAT2 mRNA. We examined and compared the glucose- and acetate-dependent changes in NAT2 expression to those of genes involved in glucose and lipid metabolism, including FABP1, CPT1A, ACACA, SCD, CD36, FASN, ACLY, G6PC, and PCK1. Genes that are involved in fatty acid transport and lipogenesis, such as FABP1 and CD36, shared a similar pattern of expression with NAT2. In silico analysis of genes co-expressed with NAT2 revealed an enrichment of biological processes involved in lipid and cholesterol biosynthesis and transport. Among these, A1CF (APOBEC1 complementation factor) showed the highest correlation with NAT2 in terms of its expression in normal human tissues. The current study shows, for the first time, that human NAT2 is transcriptionally regulated by glucose and insulin in liver cancer cell lines and that the gene expression pattern of NAT2 is similar to that of genes involved in lipid metabolism and transport.


Assuntos
Arilamina N-Acetiltransferase , Neoplasias Hepáticas , Humanos , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Linhagem Celular , Estudo de Associação Genômica Ampla , Glucose/farmacologia , Insulina/farmacologia , Lipídeos , Neoplasias Hepáticas/genética , RNA Mensageiro
13.
Arch Toxicol ; 96(12): 3257-3263, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36112171

RESUMO

We used cryopreserved human hepatocytes that express rapid, intermediate, and slow acetylator N-acetyltransferase 2 (NAT2) genotypes to measure the N-acetylation of ß-naphthylamine (BNA) which is one of the aromatic amines found in cigarette smoke including E-cigarettes. We investigated the role of NAT2 genetic polymorphism in genotoxicity and oxidative stress induced by BNA. In vitro BNA NAT2 activities in rapid acetylators was 1.6 and 3.5-fold higher than intermediate (p < 0.01) and slow acetylators (p < 0.0001). BNA N-acetylation in situ was 3 to 4- fold higher in rapid acetylators than slow acetylators, following incubation with 10 and 100 µM BNA (p < 0.01). DNA damage was two to threefold higher in the rapid versus slow acetylators (p < 0.0001) and 2.5-fold higher in intermediate versus slow acetylators following BNA treatment at 100 and 1000 µM, ROS/RNS level was the highest in rapid acetylators followed by intermediate and then slow acetylators (p < 0.0001). Our findings show that the N-acetylation of BNA is NAT2 genotype dependent in cryopreserved human hepatocytes and our data further document an important role for NAT2 genetic polymorphism in modifying BNA-induced genotoxicity and oxidative damage.


Assuntos
Arilamina N-Acetiltransferase , Sistemas Eletrônicos de Liberação de Nicotina , Humanos , Carcinógenos/toxicidade , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , 2-Naftilamina , Acetilação , Espécies Reativas de Oxigênio , Genótipo , Hepatócitos/metabolismo , Acetiltransferases/genética , Aminas
14.
Front Pharmacol ; 13: 932686, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928262

RESUMO

Objective: We aimed to establish a population pharmacokinetic (PPK) model for isoniazid (INH) and its major metabolite Acetylisoniazid (AcINH) in healthy Chinese participants and tuberculosis patients and assess the role of the NAT2 genotype on the transformation of INH to AcINH. We also sought to estimate the INH exposure that would achieve a 90% effective concentration (EC90) efficiency for patients with various NAT2 genotypes. Method: A total of 45 healthy participants and 157 tuberculosis patients were recruited. For healthy subjects, blood samples were collected 0-14 h after administration of 300 mg or 320 mg of the oral dose of INH; for tuberculosis patients who received at least seven days therapy with INH, blood samples were collected two and/or six hours after administration. The plasma concentration of INH and AcINH was determined by the reverse-phase HPLC method. NAT2 genotypes were determined by allele-specific amplification. The integrated PPK model of INH and AcINH was established through nonlinear mixed-effect modeling (NONMEM). The effect of NAT2 genotype and other covariates on INH and AcINH disposition was evaluated. Monte Carlo simulation was performed for estimating EC90 of INH in patients with various NAT2 genotypes. Results: The estimated absorption rate constant (Ka), oral clearance (CL/F), and apparent volume of distribution (V2/F) for INH were 3.94 ± 0.44 h-1, 18.2 ± 2.45 L⋅h-1, and 56.8 ± 5.53 L, respectively. The constant of clearance (K30) and the volume of distribution (V3/F) of AcINH were 0.33 ± 0.11 h-1 and 25.7 ± 1.30 L, respectively. The fraction of AcINH formation (FM) was 0.81 ± 0.076. NAT2 genotypes had different effects on the CL/F and FM. In subjects with only one copy of NAT2 *5, *6, and *7 alleles, the CL/F values were approximately 46.3%, 54.9%, and 74.8% of *4/*4 subjects, respectively. The FM values were approximately 48.7%, 63.8%, and 86.9% of *4/*4 subjects, respectively. The probability of target attainment of INH EC90 in patients with various NAT2 genotypes was different. Conclusion: The integrated parent-metabolite PPK model accurately characterized the disposition of INH and AcINH in the Chinese population sampled, which may be useful in the individualized therapy of INH.

15.
Arch Toxicol ; 96(11): 2999-3012, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36040704

RESUMO

ß-naphthylamine (BNA) is an important aromatic amine carcinogen. Current exposures derive primarily from cigarette smoking including e-cigarettes. Occupational and environmental exposure to BNA is associated with urinary bladder cancer which is the fourth most frequent cancer in the United States. N-acetyltransferase 2 (NAT2) is an important metabolizing enzyme for aromatic amines. Previous studies investigated mutagenicity and genotoxicity of BNA in bacteria and in rabbit or rat hepatocytes. However, the effects of human NAT2 genetic polymorphism on N-acetylation and genotoxicity induced by BNA still need to be clarified. We used nucleotide excision repair-deficient Chinese hamster ovary (CHO) cells that were stably transfected with human CYP1A2 and NAT2 alleles: NAT2*4 (reference allele), NAT2*5B (variant slow acetylator allele common in Europe) or NAT2*7B (variant slow acetylator allele common in Asia). BNA N-acetylation was measured both in vitro and in situ via high-performance liquid chromatography (HPLC). Hypoxanthine phosphoribosyl transferase (HPRT) mutations, double-strand DNA breaks, and reactive oxygen species (ROS) were measured as indices of toxicity. NAT2*4 cells showed significantly higher BNA N-acetylation rates followed by NAT2*7B and NAT2*5B. BNA caused concentration-dependent increases in DNA damage and ROS levels. NAT2*7B showed significantly higher levels of HPRT mutants, DNA damage and ROS than NAT2*5B (p < 0.001, p < 0.0001, p < 0.0001 respectively) although both are slow alleles. Our findings suggest that BNA N-acetylation and toxicity are modified by NAT2 polymorphism. Furthermore, they confirm heterogeneity among slow acetylator alleles for BNA metabolism and toxicity supporting differential risk for individuals carrying NAT2*7B allele.


Assuntos
Arilamina N-Acetiltransferase , Sistemas Eletrônicos de Liberação de Nicotina , 2-Naftilamina , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Animais , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Células CHO , Carcinógenos/toxicidade , Cricetinae , Cricetulus , Citocromo P-450 CYP1A2/metabolismo , Genótipo , Haplótipos , Humanos , Hipoxantina Fosforribosiltransferase/genética , Hipoxantinas , Coelhos , Ratos , Espécies Reativas de Oxigênio
16.
Biochem Pharmacol ; 203: 115184, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35872325

RESUMO

Loss of heterozygosity (LOH) is a hallmark feature of cancer genomes that reduces allelic variation, thereby creating tumor specific vulnerabilities which could be exploited for therapeutic purposes. We previously reported that loss of drug metabolic arylamine N-acetyltransferase 2 (NAT2) activity following LOH at 8p22 could be targeted for collateral lethality anticancer therapy in colorectal cancer (CRC). Here, we report a novel compound CBK034026C that exhibits specific toxicity towards CRC cells with high NAT2 activity. Connectivity Map analysis revealed that CBK034026C elicited a response pattern related to ATPase inhibitors. Similar to ouabain, a potent inhibitor of the Na+/K+-ATPase, CBK034026C activated the Nf-kB pathway. Further metabolomic profiling revealed downregulation of pathways associated with antioxidant defense and mitochondrial metabolism in CRC cells with high NAT2 activity, thereby weakening the protective response to oxidative stress induced by CBK034026C. The identification of a small molecule targeting metabolic vulnerabilities caused by NAT2 activity provides novel avenues for development of anticancer agents.


Assuntos
Antineoplásicos , Arilamina N-Acetiltransferase , Neoplasias Colorretais , Acetiltransferases/genética , Adenosina Trifosfatases , Alelos , Antineoplásicos/farmacologia , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Humanos
17.
Toxicol Appl Pharmacol ; 442: 115993, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35353990

RESUMO

Lung cancer is the leading cause of cancer deaths in the United States with high incidence in tobacco smokers. Arylamine N-acetyltransferase 2 (NAT2) is a xenobiotic enzyme that catalyzes both N- and O-acetylation of carcinogens present in tobacco smoke and contributes towards the genotoxicity of these carcinogens. NAT2 allelic variants result in slow, intermediate, and rapid acetylation phenotypes. A recent meta-analysis reported NAT2 non-rapid (slow and intermediate) phenotypes had a significantly increased risk of lung cancer. NAT2 activity in humans is thought to be restricted to liver and gastrointestinal tract, and no studies to our knowledge have reported the expression of NAT2 activity in immortalized human lung epithelial cells. Given the importance of NAT2 in cancer and inhalation of various carcinogens directly into the lungs, we investigated NAT2 activity in human lung epithelial cells. Both NAT1 and NAT2 protein were detected by "in-cell" Western. Arylamine N-acetyltransferase activity was determined with selective substrates for NAT1 (p-aminobenzoic acid; PABA) and NAT2 (sulfamethazine; SMZ) in the presence and absence of a selective NAT1 inhibitor. PABA N-acetylation (NAT1 activity) in cell protein lysates was abolished in the presence of 25 µM of NAT1 inhibitor whereas SMZ N-acetylation (NAT2) was unaffected. Incubation with the NAT1 inhibitor partially reduced the N-acetylation of ß-naphthylamine and the O-acetylation of N-hydroxy-4-aminobiphenyl consistent with catalysis by both NAT1 and NAT2. Immortalized human lung epithelial cells exhibited dose-dependent N-acetylation of 4-ABP with an apparent KM of 24.4 ± 5.1 µM. These data establish that NAT2 is expressed and functional in immortalized human lung epithelial cells and will help us further our understanding of NAT2 in lung cancer.


Assuntos
Arilamina N-Acetiltransferase , Neoplasias Pulmonares , Ácido 4-Aminobenzoico/metabolismo , Acetilação , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Carcinógenos/metabolismo , Células Epiteliais/metabolismo , Humanos , Isoenzimas/genética
18.
Front Pharmacol ; 13: 821133, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281898

RESUMO

Arylamine N-acetyltransferases catalyze the transfer of acetyl groups from the endogenous cofactor acetyl coenzyme A (AcCoA) to arylamine (N-acetylation) and N-hydroxy-arylamine (O-acetylation) acceptors. Humans express two arylamine N-acetyltransferase isozymes (NAT1 and NAT2) which catalyze both N- and O-acetylation but differ in genetic regulation, substrate selectivity, and expression in human tissues. We investigated recombinant human NAT1 and NAT2 expressed in an Escherichia coli JM105 and Schizosaccharomyces pombe expression systems as well as in Chinese hamster ovary (CHO) cells to assess the relative affinity of AcCoA for human NAT1 and NAT2. NAT1 and NAT2 affinity for AcCoA was higher for recombinant human NAT1 than NAT2 when catalyzing N-acetylation of aromatic amine carcinogens 2-aminofluroene (AF), 4-aminobiphenyl (ABP), and ß-naphthylamine (BNA) and the metabolic activation of N-hydroxy-2-aminofluorene (N-OH-AF) and N-hydroxy-4-aminobiphenyl (N-OH-ABP) via O-acetylation. These results suggest that AcCoA level may influence differential rates of arylamine carcinogen metabolism catalyzed by NAT1 and NAT2 in human tissues. Affinity was higher for NAT2 than for NAT1 using N-OH-AF and N-OH-ABP as substrate consistent with a larger active site for NAT2. In conclusion, following recombinant expression in bacteria, yeast, and CHO cells, we report significant differences in affinity between human NAT1 and NAT2 for its required co-factor AcCoA, as well as for N-hydroxy-arylamines activated via O-acetylation. The findings provide important information to understand the relative contribution of human NAT1 vs NAT2 towards N-acetylation and O-acetylation reactions in human hepatic and extrahepatic tissues.

19.
Braz. J. Pharm. Sci. (Online) ; 58: e19221, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1374557

RESUMO

Abstract The purpose of the current work was to assess a possible role of cytochrome P450 1A2 (CYP1A2) and N-acetyltransferase 2 (NAT2) in the metabolic activation of 2,6-dimethylaniline (2,6-DMA) and also clarify the function of DNA repair in affecting the ultimate mutagenic potency. Two cell lines, nucleotide excision repair (NER)-deficient 5P3NAT2 and proficient 5P3NAT2R9 both expressing CYP1A2 and NAT2, were treated with 2,6-DMA for 48 h or its metabolites for 1 h. Cell survival determined by trypan blue exclusion and MTT assays, and 8-azaadenine-resistant mutants at the adenine phosphoribosyltransferase (aprt) gene locus were evaluated. 5P3NAT2 and 5P3NAT2R9 cells treated with 2,6-DMA and its metabolites showed a dose-dependent increase in cytotoxicity and mutant fraction; N-OH-2,6-DMA and 2,6-DMAP in serum-free α-minimal essential medium (MEM) are more potent than 2,6-DMA in complete MEM. 5P3NAT2 cells was more sensitive to the cytotoxic and mutagenic action than 5P3NAT2R9 cells. H2DCFH-DA assay showed dose-dependent ROS production under 2,6- DMAP treatment. These findings indicate that the genotoxic effects of 2,6-DMA are mediated by CYP1A2 activation via N-hydroxylation and the subsequent esterification by the phase II conjugation enzyme NAT2, and through the generation of ROS by hydroxylamine and/or aminophenol metabolites. NER status is also an important contributor


Assuntos
Células/classificação , Citocromo P-450 CYP1A2/análise , Genotoxicidade , Linhagem Celular/classificação , Hidroxilamina/agonistas , Reparo do DNA
20.
Mem. Inst. Oswaldo Cruz ; 117: e210328, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1375902

RESUMO

BACKGROUND Distinct N-acetyltransferase 2 (NAT2) slow acetylators genotypes have been associated with a higher risk to develop anti-tuberculosis drug-induced hepatotoxicity (DIH). However, studies have not pointed the relevance of different acetylation phenotypes presented by homozygotes and compound heterozygotes slow acetylators on a clinical basis. OBJECTIVES This study aimed to investigate the association between NAT2 genotypes and the risk of developing DIH in Brazilian patients undergoing tuberculosis treatment, focusing on the discrimination of homozygotes and compound heterozygotes slow acetylators. METHODS/FINDINGS The frequency of NAT2 genotypes was analysed by DNA sequencing in 162 patients undergoing tuberculosis therapy. The mutation analyses revealed 15 variants, plus two new NAT2 mutations, that computational simulations predicted to cause structural perturbations in the protein. The multivariate statistical analysis revealed that carriers of NAT2*5/*5 slow acetylator genotype presented a higher risk of developing anti-tuberculosis DIH, on a clinical basis, when compared to the compound heterozygotes presenting NAT2*5 and any other slow acetylator haplotype [aOR 4.97, 95% confidence interval (CI) 1.47-16.82, p = 0.01]. CONCLUSION These findings suggest that patients with TB diagnosis who present the NAT2*5B/*5B genotype should be properly identified and more carefully monitored until treatment outcome in order to prevent the occurrence of anti-tuberculosis DIH.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...